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Extensional and shear compliances of 
polyethylene terephthalate sheets with 
orthorhombic symmetry 

N. H. L A D I Z E S K Y * ,  I. M. W A R D  
Department of Physics, Leeds University, UK 

The St Venant relations are applied to obtain the three shear compliances of a polymer 
sheet with orthorhombic symmetry. The results for one way drawn polyethylene 
terephthalate sheet taken in conjunction with data for two extensional compliances, suggest 
that in this material, planar orientation is an important factor in determining the 
mechanical properties. 

1. Introduction 
In this paper we describe the determination of 
the three shear compliances of one way drawn 
polyethylene terephthalate sheets, together with 
the measurement of the two extensional compli- 
ances in the plane of the sheet. The determination 
of the shear compliances involves the application 
of the St Venant theory for the torsion of rect- 
angular prisms. Because sheet of one thickness 
only was available, special procedures had to be 
devised and these will be described in detail. To 
our knowledge this is the first time that all three 
shear compliances of an orthorhombic sheet 
have been directly determined. 

Polyethylene terephthalate sheets, stretched at 
constant width, possess orthorhombic sym- 
metry, as revealed by optical birefringence and 
wide-angle X-ray diffraction measurements. The 
precise structure of these sheets is complicated 
for two principal reasons. Firstly, there is a 
considerable distribution of molecular orienta- 
tion even in the 5:1 draw ratio sheet used in 
these experiments, and only about 35 ~/oo of the 
material shows three-dimensional crystalline 
order. Secondly, polyethylene terephthalate has a 
triclinic unit cell [1 ], which makes for consider- 
able complications in the description of the 
orientation of the structure. It can be said, 
however, that these 5:1 sheets have high chain 
axis orientation in the draw direction, which is 
shown by the preferred orientation of the crystal- 
lographic c-axes and the high refractive index in 
this direction; and, moreover, that there is 

preferred orientation of the (100) planes in the 
crystalline regions such that these lie in the plane 
of the sheet. The (100) plane is nearly, but not 
quite, the plane containing the benzene ring of the 
terephthalate structure. 

2. Theory 
2.1. Elastic constants 
The mechanical properties of an anisotropic 
elastic solid can be described by a generalized 
Hooke's law relating strains % with stresses aq 
by the following relations: 

~-lO = S29q Gq (yq = Cq~ 0 E2o 

where S~q and Cq~ are the compliance and stiffness 
constants respectively and p, q take values 
1, 2 . . . .  6. These representations are equivalent, 
but, for convenience, we will work in terms of the 
compliance constants. 

A solid with orthorhombic symmetry has nine 
independent elastic constants. If we choose the 
1, 2, 3 axes as the principal axes of symmetry 
(Fig. 1), we write the compliance matrix as 

/ Sn $1~ S~3 0 0 0 \ 
I $12 $22 S'~3 0 0 

S~ | Sla S~3 Sa3 0 0 

= ~ i 0 0 $44 0 
0 0 0 $55 
0 0 0 0 $66/  

It is to be noted that $12, $44, etc. are terms of 
the compliance matrix, but they are not the 
fourth rank tensor compliances. 
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$11 , $22 and Saa are extensional compliances. 
S~4, $55 and SG6 are shear compliances. 
S~, S~3 and $23 are compliances which involve 
Poisson's ratios. 

2.2, Determinat ion of shea r  compl i ances  
The shear compliances are determined in torsion 
experiments by relating a known torque and 
twist with the shear compliances of  the material. 
The relations are given by the St Venant theory, 
which is discussed in detail elsewhere [2, 3]. Here 
it will be sufficient to say that, for a prism with 
rectangular cross-section possessing ortho- 
rhombic symmetry, the six relationships are 
(referred to a co-ordinate system as shown in 
Fig. l) 

ab 3 ba 3 

u~=( ) = b 4 \ s . /  
ac 3 ca 3 

= ( . : ) _ ,  : a / I s o o l  
c 4/s,,/ 

bc 3 cb 3 

,,. = ( .  = /f oo  
c ,~ \ & d  

where M~, M~ and M~ are the torques applied 
to a sample of unit length to produce a unit twist 
around the z, y or x directions respectively, and 
a, b and c are the sides of the sample parallel to 
x, y and z respectively. 

For  the St Venant theory to be applicable, x, 
y and z must be the principal axes of  the ortho- 
rhombic sheet. /3(u), the St Venant function, is 

<90 

/3(u) = ~-4 ~-~ 1 - ~ tanh Tu 

k =  1 ,3 ,5  . . . .  

and is shown in Fig. 2 for u ~> 1. Only the form 
of the St Venant relationships giving u (or u') >~ 1 
is used. 

Each of the above relations include two shear 
compliances. Since we do not know any of them, 
we must use the "pseudo-isotropic" method 
described in our previous paper [3 ]. Briefly, this 
consists in assuming the sample to be transversely 
isotropic in, say, the x y  plane. In this case, 
5'55 = S~4 and if a/b >~ 1 we have 

I o 

2",, 

z 

Y 

Figure 1 Diagram showing the set of Cartesian axes with 
respect to sample (c is parallel to initial draw direction, a 
is perpendicular to the plane of the sheet and normal to 
c). 

The error in u~ produced by this assumption 
will reflect in $55 through fl(u~), but Fig. 2 shows 
that if the true uz > 10, then the error in fi(uz) is 
small. Thus, i f a /b  is sufficiently large, fi(u~) is not 
sensitive to the value of $55/S~4 and we may put 
fi(u~) = 0.32. A plot of $55 versus a/b ($5~ 
calculated with the pseudo-isotropic method) 
can then be extrapolated to a/b >~ 1 to find the 
true value of $55. 

In this paper, S s J  and $5~ ~ will denote 
particular values of  $5.5 calculated f rom a torsion 
experiment at a single aspect ratio, for torsion 
around z and x respectively. $5~ z and $55 x are 
the values of  $55 ~ and $55 x obtained with any 
method of handling the St Venant theory using 
the extrapolation techniques. The final value of 
$55 is obtained by combining results from the 
different methods. 

2.3. Calculation of $55 
Because the commercially available sheets have a 
thickness (b dimension) of  0.025 cm, only twists 

0-34 I- 
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0 ' 2 8  
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0 . 2 4  
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Figure 2 Plot of St Venant's function fi(u) versus u. 
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in the z and x directions are possible. The 
samples will all be such that: 

C a 
D > 1 and D > 1 

and the two relations to be used experimentally 
are: 

I 
M= = ~ fl(u~) u= = ~ ,~/ \Sn~] (1) 

ab a a / { S s a ~ .  
Ms = ~ fl(u,) u, = 5 ,~/ \S , , ]  (2) 

It follows that the "pseudo-isotropic" method 
can only determine $5> We will now consider the 
relationships between Ssd, Ssa ~ and the aspect 
ratios, according to the relative values of S~, S~5 
and S~. Four cases can be distinguished: 

(a) S~n and S~ > S~ 
(b) S~ and S~ < S~ 
(c) S~ > &~; &~ < &~ 
(d) S~ < S~5 ; $4~ > $5~. 
Cases (a) and (b) have two possibilities each, 

namely 

$6~ > S~4 or  $66 < 844.  

(a) S~. and $4~ > &5 
In this case: 

- - < 1  - - < 1  
&0 S .  

i.e. 

C a 

which means: 

& d  > &~ & d  > &~. 

Because of the shape of/3(u) versus u, the differ- 
ence between either $55 ~ or Ssd and $55 is smaller 
the higher the aspect ratio, that is, $55 ~ and Ssd 
decrease towards $55 for increasing aspect ratios. 
(aO $66 > S44 

In this case: 

$55 $55 

sG<  < 1  �9 

Therefore, the errors produced by taking the 
aspect ratio instead of the corresponding u are 
smaller for us than for u,. 
i.e. S~5 ~ > Ssd > $55. 
( a ~ )  & ~  < &~ 

In this case: 
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S~5 $55 
Sa'---~ < ~ < 1 

giving Ssd > S J  > $55. 
Similar arguments apply to cases (b), (c) and (d). 
Summarizing 
(a) S~ > $55 < $4, 

Ssd and SsJ  decrease with increasing aspect 
ratio, the limit being $55. 
If $66 > S~4, then $55 x > Ssd > $55. 
If $66 < $44, then $55 * > S~5 �9 > $55. 

(b) &0 < &5 > S .  
Ssd and S~5 ~ increase with increasing aspect 
ratio, the limit being Ssa. 
If $66 > $44, then Ssd < $55 ~ < S~5. 
If $66 < $44, then S J  < Ssd < $55. 

(c) s00 > &5 > s .  
$55 ~ decreases and Ssd increases with 
increasing aspect ratio, the limit being $5~ �9 
In this case: 
& d  > &~ > & d .  

(d) S~6 < $55 < S,4 
S5~ ~ increases and SsJ  decreases with 
increasing aspect ratio, the limit being $55. 
In this case: 

& d  < $55 < &5 ~. 

2.4. Calculation of &,  and S,, 

Once $55 is known, we can use relations 1 and 2 
(the only ones available to us) to calculate the 
remaining shear compliances S~6 and $4~. This 
has been called the "exact" method in reference 
3 and it consists in calculating fi(u) with the 
known value of $55. 

M~ s M~ $5~ 
f l (uo~)-  cb a fi(u~) = ab a 

Fig. 2 then provides u~ and u~, whence 

& 6  = - -  ' & 4  = - -  " Hx 2 Uz 2 

As discussed previously [3], it was found 
necessary to extrapolate to c/b -+ 0 and a/b -+ 0 
to obtain the true values of the shear compli- 
ances. In fact, these extrapolations are equivalent 
t o :  

b b 
- --~ oo and - -+ o9 
C a 

which are the conditions for calculating $66 and 
$44 as if the sample were transversely isotropic. 
More details of this will be given later in the 
paper. 
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2.5. Correct ion for axial tensile s t ress  
The St Venant theory assumes that the sample is 
subjected to a twisting moment only, whereas 
there is usually also a small tensile stress. The 
effect of axial tensile stress is to produce an 
apparent increase in the torsional rigidity. This 
was first observed in thin metallic strips used as 
galvanometer suspensions [4, 5]. For  a very thin 
strip, the additional couple can be calculated on 
the basis that it is similar to a bifilar suspension 
[6]. A more general treatment later given by 
Biot [7] showed that the torsional rigidity is 
increased by a term which is proportional to the 
polar moment of inertia of the cross-section, 
with respect to its centre of gravity. Biot's treat- 
ment is valid for the case where the plane 
perpendicular to the twist axis is isotropic. It h~s 
been shown in our previous publication [3] that 
the Biot correction cannot be used in ortho- 
rhombic sheets and the St Venant torque must be 
obtained by an empirical extrapolation to zero 
axial stress. 

3. Experimental 
3.1. Preparation of specimens 
The samples used were taken from a roll of 
polyethylene terephthalate sheet, drawn to draw 
ratio 5: l at constant width and manufactured by 
Imperial Chemical Industries Ltd, Plastics 
Division, Welwyn Garden City. The sheet was 
several yards long, 50 cm wide and had a thick- 
ness varying between 0.023 and 0.045 cm from 
one edge to the other. All the experiments were 
confined to samples taken from a 7 cm wide 
strip, cut 3 cm off the thinner edge. 

Samples were always prisms of rectangular 
cross-section. The dimensions of those used for 
extensional measurements were 3.5 x 0.2 x 
0.025 cm, while those used for torsion measure- 
ments were 3.5 cm long, 0.025 cm thick with 
widths varying between 0.1 and 0.6 cm. 

Some difficulties were experienced when 
cutting the samples. The standard technique was 
by means of a surgical blade running along a 
metal ruler. The plastic deformation produced 
by the cutting seemed to relax the edge of the 
sample outside the ruler and produce a protuber- 
ance along its length with a height of 30 ~ the 
thickness of the sample. In a 0.1 cm width 
sample this protuberance can have a cross- 
sectional area of about 8 ~ the cross-section of 
the sample, and, although this extra area can be 
accurately measured, its mechanical properties 
are unknown. Furthermore, since the applica- 

bility of the St Venant theory depends on each 
side of the prism being parallel to a plane of 
structural symmetry, the edge protuberance adds 
non-measurable error to the calculation of the 
shear compliances. 

It was found that the best way to avoid the 
formation of the protuberance was to cut the 
samples in such a way that each edge was under 
the metal ruler, that is, under a high hand 
pressure. Briefly, this was done by cutting one 
edge in the standard way, drawing a line parallel 
to it and then, with the sample under the ruler, 
cutting the other edge parallel to the line. With 
practice, an accuracy of 2 to 3 ~ can be achieved 
in the parallelism of a sample 3.5 cm long and 
0.1 cm wide. 

Another standard method for obtaining 
samples was by using a dumbell cutter between 
the plates of a press. This method gave good 
samples in the draw direction, but for samples 
perpendicular to it, the protuberance was 
significant. 

3.2. Torsion measurements 
The torsion apparatus was described in detail in 
reference 2 and only a summary of the method 
will be given here. 

A torque is applied to the sample by means of 
a 6 ~  phosphor bronze long (_~ 100 cm) ribbon 
of known torsional rigidity. If c' is the torque for 
unit twist per unit length of the suspension, 
esusv and Isusp the twist and length of the 
suspension, respectively, M=' the experimental 
torque for unit twist per unit length of the sample 
(with an axial stress different from zero) and 
esamp and lsarnp the twist and length of the sample, 
respectively, then 

c' esusp M~' es~mp 
]sus. ]samp 

Thus, a graph of M~' versus axial stress can be 
made and M~ found by extrapolation. M~ is 
found in a similar manner. 

c' is obtained by attaching inertia bars to the 
end of the suspension and timing the period, T, 
of free oscillations. Under these conditions, 

c' 47reI 
= T2 l~.~p 

where I is the moment of inertia of  the bar re- 
lative to the axis of oscillation. 

The remarks concerning the effects of axial 
stress on the sample (Section 2.5) also apply to 
the phosphor bronze ribbon. Here the situation 
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is complicated by the very large strains involved 
so that the torsional rigidity is a function of both 
the amount of twist and the axial stress. A graph 
of e' versus axial load was, therefore, constructed 
for different twist amplitudes, and the correct 
value of e' for a given M~' (or MS) measurement 
obtained by interpolation. In practice, the effect 
of axial load was found to be larger than the 
effect of twist. 

3.3. Extensional compl iance appara tus  
Extensional compliances were determined using 
the dead-loading creep apparatus described by 
Gupta and Ward [8]. The only modification was 
the fitting of a larger micrometer head, increasing 
the accuracy of the reading to 5 x 10 .5 cm. 

3.4. Experimental condit ions 
The experiments were undertaken in a 
thermostatically-controlled room at a tempera- 
ture of 20 • 1 o C. 

To ensure reproducibility in the torsion 
experiments, the specimens were conditioned 
under the maximum axial stress and torque to be 
used, with two twisting cycles at each side of the 
equilibrium position. Each cycle consisted of 
10 sec maximum torque, followed by 100 sec 
under approximately zero torque. 

Conditioning of the specimens for the 
extensional compliance experiments consisted of 
two cycles of 10 sec loading at the maximum 
load to be used, followed by 100 sec recovery 
under zero load. 

The time-dependence of the extensional and 
shear compliances was determined up to 1000 
sec. As the time-dependences were small and are 
not of particular interest in the present work, the 
results will, in general, be given in terms of 10 
sec compliances. In the torsion experiments, 
results were obtained for twists of 0.18 and 0.33 
radians. 

For a cylinder of diameter 5 mm and length 
3.5 cm, a twist of 0.3 radians corresponds to a 
maximum shear strain of 2.5 ~o. This would be 
similar to the largest aspect ratio specimens, but 
the final values of the shear compliances were 
always obtained, as explained above, by extra- 
polation to zero aspect ratio from data for a 
range of aspect ratios. The most important results 
from the viewpoint of the final extrapolated 
values are therefore those at lower aspect ratios 
where the maximum shear strains are lower by 
almost an order of magnitude. In fact, results for 
twists of 0.18 and 0.33 radians were within 
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experimental error, and the extensive data 
reported in this paper are for the higher level of  
twist because they are considered to be more 
accurate. 

3.5. Experimental errors 
In a previous publication [9] it was shown that 
the extensional compliances can be measured to 
within ~ 1 .5~  but the variability among the 
present samples was about ~ 4~o. It has been 
said that the thickness of the sheet varies between 
0.023 and 0.045 cm from one edge to the other. 
This was accompanied by 20 ~ variability in Sa3, 
but much smaller for $11. The q- 4 ~ variability 
of the extensional compliances as mentioned 
above refer to samples taken from the 7 cm wide 
strip referred to in the experimental section. 

In the previous work [3] it was found that the 
experimental spread in the determination of the 
shear compliances was 10 to 15 ~ .  In the present 
experiments, variability between samples and the 
use of the extrapolation procedures, as well as 
some possible departure of our sheets from 
orthorhombic symmetry, gave a somewhat large 
range, about 25 ~ .  

4. Results  
4.1. Calibration of the suspens ion  
Fig. 3a shows c' versus axial load for one of the 
suspensions used. (0.2 x 0.005 cm cross-section, 
100 cm long). Curves are given for different 
amplitudes and it can be seen that a linear 
relationship is a good approximation for all the 
results 

c ' = A + B W  

where W is the axial stress and A and B, shown 
in Fig. 3b, are functions of the amplitude. Thus, 
c' can be calculated for any axial stress and any 
twist within the range of  the calibration. 

4.2. Calculation of the St Venant  Torque  
Fig. 4 shows M, '  versus axial stress for a 0.5 cm 
wide sample and a twist of 0.33 radians. It also 
shows the corresponding torques at zero axia[ 
load calculated with the Blot correction (M,B). 
As expected, it is seen that the Blot correction 
does not produce correct values of M,. 

Fig. 5 shows similar results for M~' versus 
axial stress for a 0.4 cm wide sample. 

4.3. Calculation of $5~ 
Fig. 6 was obtained with the pseudo-isotropic 
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Figure 3 Calibration of suspension. (a) c ' (= A + B W )  
versus axial load (W); (b) A and B versus amplitude. 

me thod  and it shows $55 ~ and $55 ~ versus aspect  
rat io.  The twist was 0.34 radians.  

Assuming  tha t  an aspect  ra t io  o f  23 is suffi- 
ciently large for  the pseudo- i so t rop ic  a s sumpt ion  
to be realistic, we ob ta in :  

S~a z = 5.09 x 10 -11 cm 2 dyn -1 , 

S~5 ~ = 7.85 x 10 -1~ cm ~ dyn -1 
and  

$55 = 6.47 x 10 - ~  cm 2 dyn -~ 

where Spa is the average of  $55 ' and  S~5 ~. 
Figs. 7a and b show the t ime-dependence  of  

$55 ~ and S~J  respectively,  using two samples of  
very large aspect  ra t io  (where, in bo th  cases, the 
$55 con t r ibu t ion  to the St Venant  re la t ions  is 
much  larger  than  the con t r ibu t ion  of  S~a and S+G 
respectively).  I f  ~IS  is the t ime-dependence  
between 10 and 1000 sec, we define: 

/ i  S = S l o o p  see  - -  S i p  see  

S l o s e e  X 1 0 0 %  " 

The results show that  /iS55~ = 1.6% 
AS~5~ = 2.0%. 

and 

3 0 (  ' i i ' 1 O I  i i , 6 i 2 0 [  i , , i 3 0 1  1 i i i 4 O I  , , i ~ _2_.50 

10- x AXIAL STRESS (dyn r -2) 

Figure 4 S~5 ~ determination: MZ and M+ B versus axial 
stress; M , ' =  torque per unit twist per unit length of 
sample; M~ B = St Venant torque calculated with the 
Blot correction. 

~ 19'O I / 

+ 
I O 

17'O 

16"O - ~ ~ _ .  , ~ , ~ .  ~ - ~ - - - - - ~  MxB 

15"0 ' i i i i i P ~ i 

10 -6 20 30 40 50 
10 x AXIAL STRESS(dyn crn-2) 

Figure 5 S%5 determination: Mz" and Mz B versus axial 
stress; Mx' = torque per unit twist per unit length of 
sample; Mz B -  St Venant torque calculated with the 
Biot correction. 

4.4. C a l c u l a t i o n  of S++ and  $4, 

The calcula ted values of  $66 = and $44 z (as given 
by  the St Venant  re la t ions for  any aspect  rat io)  
are shown in Fig. 8a and b respectively. Different  
curves are given for  each of  the calcula ted values 

o f  $5~ ($55 ~, S s J  and $5~). F o r  aspect  ra t ios  
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ASPECT RATIO (c/b),(G/b) 

Figure 6 Plot ofS55 ~ and S~5 z versus aspect ratio (pseudo- 
isotropic method). 
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Figure 7 Shear compliances $55 ~ and $55 ~ as a function of 

time (a) S~5 �9 for aspect ratio c/b = 21.6, (b) $5~ ~ for 
aspect ratio a/b = 18.5. 

c / b  ~ 0 a n d  a / b - - ,  O, all  the  curves  c o n v e r g e  
t o w a r d s  the  t rue  va lues  o f  $66 and  S44respectively.  
A v e r a g i n g  these  e x t r a p o l a t i o n s  fo r  each  va lue  o f  
S~5 we o b t a i n  

S06 ~ -- 27.7 x 10 -11 c m  2 dyn  -1 , 

$44 ~ = 26.25 • 10 -11 cm 2 dyn  -1 . 

4.5. C a l c u l a t i o n  of  e x t e n s i o n a l  c o m p l i a n c e s  

Figs.  9 and  10 s h o w  the  i s o c h r o n o u s  10 sec 
s t ress-s t ra in  curves  fo r  Sa3 a n d  S~z respect ive ly .  
Because  $33 is ve ry  smal l  c o m p a r e d  wi th  S n ,  the  
m a x i m u m  ex tens ion  in the  z (draw)  d i rec t ion  is 
0 .22 %, c o m p a r e d  wi th  0.85 % in the  x d i rec t ion .  
N o t  surpr is ingly ,  $3~ appea r s  to  be  l inear  wi th in  
the  n a r r o w  range  m e a s u r e d ,  whe rea s  $11 can  be  
seen to  be  app rec i ab ly  n o n - l i n e a r  at  all levels  o f  
s t ra in .  T h e  resul ts  at  10 sec and  0 . 1 %  strain a re :  
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Figure 8 Calculation of $6~ and S~4 using the exact 
metbod. 

Plots of $66 ~ (a) and S~4 ~ (b) versus aspect ratio 
• $55 = $5~ z = 5.09 • 10 -11 cm z dyn -1 

�9 $55 = $55 = 6.47 • 10 - n e m  2 dyn t 

�9 $5~ = Sss': = 7.85 • 10 1~ cm ~ dyn-~. 
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Saa = 0.58 x 10 -1~ cm 2 dyn -1 , 
$11 = 4.45 x 10 -la cm 2 dyn -~ . 

The time-dependences between 10 and 1000 
sec, as defined above, are ASa3 = 3 %, ASaa = 
3 % and are shown in Fig. 1 la  and b respectively. 

5. Discussion 
5.1. Time-dependence 
All the time-dependences measured (AS3a, A S ~  
and AS55) are very small and do not appear to be 
of  interest at present. 

5.2. Determination of shear compliances 
In Fig. 6 we see that both ShJ and Shs ~, calcu- 
lated with the pseudo-isotropic method, are 
decreasing functions of  the aspect ratio. Also 
$55 �9 > $55 ~. This is the case (at) in the theoretical 
section which predicted that both $66 and $44 
would be larger than $55, and that $66 > $4~. 
These predictions are in complete agreement with 
the results, although it must be pointed out that 
the difference between S~6 and S~ is within 
experimental error. 

We would have expected both $5~ ~ and S~ ~ to 
converge asymptotically towards the true value 
of S~ for large aspect ratios. The fact that the 
experimental curves are neither convergent nor 
asymptotic can be due to a combination of three 
adverse factors: 
1. Variability along the sheet, which reflects 
itself in a variation of about 8 % for S~a. 
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Figure 9 Calculation of  $33 (10 sec). Relative e~tension 
versus  stress. 

9"0 

Z 

i 
5.O 

O 4OO 2 0 0  
10 -6 x STRESS (dyn cm -2) 

Figure 10 Calculation of  $11 (10 sec.) Relative extension 
versus stress. 

~0"60  

co 
• 

o 
O"570 

(a) 

x J  
J 

' s o o  ' ' ' ~ o 6 o  
TIME (sec) 

f- 

~uE4.5 

=x 
o 

4s i i i [ i i 

5 0 0  1 0 0 0  
TIME (sec) 

(b) 

j X f X  •••• 

Figure 11 Extensional compliances $33 (a) and $11 (b) as a 
function of  time. 

2. The sheet is not perfectly orthorhombic. 
3. Because $66 ~ S~4 >> $55 we are in the worst 
condition to calculate ShS with the pseudo- 
isgtropic assumption. This applies for twist axes 
in both the z and x directions. 

We have therefore considered three values of  
S~5, i.e. as before we consider ShaL $5~ ~ and S~5, 
all taken for an aspect ratio c/b ~ a/b ~--- 23. We 

will show later that both S~J and $55 are 
reasonably near the true value. 
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W e  n o w  c o n s i d e r  t h e  d e t e r m i n a t i o n  o f  $66 a n d  
$44. W e  h a v e  seen  in  t he  t h e o r e t i c a l  p a r t  t ha t ,  

k n o w i n g  $5~, t he  t o r s i o n  e x p e r i m e n t s  give:  

u~ a n d  u~ are  n o w  ca lcu la t ed  f r o m  Fig.  2 a n d  
f inal ly 

~(u~) - M~ $55 M~ $55 T a b l e  I gives the  c a l c u l a t i o n s  u s e d  in  F ig .  8a 
cb ~ ~(u~)  = a b  8 a n d  b. 

TAB LE I Calculation of $4~ and $66 for polyethylene terephthalate sheets D.R. = 5:1 at constant width. 

(a) S63 

$55 M x  eb 3 fi(u~) ux c/b S~6 :~ 
(cm ~ dyn -1 • 101~) (dyn. cm 2 • 10 -8) (cm 4 x 106) (cm 2 dyn -1 • 10 ~1) 

$55 z = 5.09 

$53 = 6.470 

S J  ~ 7.85 

7.117 2.289 0.1583 1.138 8.1085 258.43 
12.221 3.716 0.1674 1.211 13.8962 669.99 
3.124 1.171 0.1358" ~ 1 '  4.1120 ~86.4" 

21.630 5.254 0.2095 1.673 23.0101 962.83 
15.890 4.216 0.1918 1.448 17.7400 763.89 
22.280 5.977 0.1897 1.427 21.6193 1168.45 

7.117 2.289 0.2012 1.562 8.1085 174.34 
12.221 3.716 0.2128 1.723 13.8962 420.80 
3.124 1.171 0.1726 1.258 4.1120 69.12 

21.630 5.254 0.2664 3.130 2 3 . 0 1 0 1  349.66 
15.890 4.216 0.2439 2.353 17.7400 367.74 
22.280 5.977 0.2412 2.293 21.6193 575.11 

7.117 2.289 0.2441 2.368 8.1085 92.05 
12.221 3.716 0.2582 2.800 13.8962 193.35 
3.124 1.171 0.2094 1.671 4.1120 47.54 

21.630 5.254 0.3232 19.00 23.0101 11.51 
15.890 4.216 0.2959 5.82 17.7400 72.94 
22.280 5.977 0.2926 5.24 21.6193 133.62 

* fl(uz) slightly smaller than the lower limit. 

(b) S44 
S~5 M z  ab 3 ~(u~) uz a/b $44 z 
(cm 2 dyn -1 • 1011) (dyn. cm ~ • 10 -8) (cm ~ • 108) (cm ~ dyn -1 • 1011) 

$35 ~ = 5.09 7.910 2.118 0.1901 1.430 9.4304 221.32 
16.625 3.972 0.2130 1.728 13.2479 299.18 

3.643 1.220 0.1520 1.087 4.4834 86.56 
36.900 5.414 0.3469 - -  23.7100 - -  
22.380 4.549 0.2504 2.545 17.3740 237.11 
31.220 5.971 0.2661 3.115 18.5157 179.85 

$55 = 6.470 7.910 2.118 0.2416 2.298 9.4304 108.95 
16.625 3.972 0.2708 3.340 13.2479 101.75 
3.643 1.220 0.1934 1.467 4.4834 60.43 

36.90 5.414 0.4410 - -  23.7100 - -  
22.38 4.549 0.3183 14 .03  17.3740 9.92 
31.22 5.971 0.3383 - -  18.5157 - -  

$53 z = 7.85 7.910 2.118 0.2932 5.38 9.4304 24.12 
16.625 3.972 0.3286 60.00 13.2479 0.38 
3.643 1.220 0.2537 2.640 4.4834 22.64 

36.90 5.414 0.5350 - -  23.7100 - -  
22.38 4.549 0.3862 - -  17.3740 - -  
31.22 5.971 0.4104 - -  18.5157 - -  
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We first note that the values of fi(u) obtained 
as above, mus: be within the narrow limits 
0.145 to 0.330 to have physical meaning, i.e. to 
provide a value of u. The fact that only seven of 
the thirty-six calculations made from experiments 
in twelve samples fail to do so suggests that the 
values obtained for $55 are close to the true one. 
Three of these seven wrong values of 3(u) are for 
the calculation of $44 with $55 ~ = 7.85 x 10 - ~  
cm2dyn -~ together with another value very 
nearly outside the higher limit. We can, therefore, 
assume that this $55 ~ value is too high and that 
both $55 ~ and Sea are more representative of the 
mechanical properties of the sheet. We finally 
take 

$55 ~ + $5.~ $55 - 2 - 5.88 x 10 -.1 cm 2 dyn -1.  

We have said elsewhere [3] that our method 
gives correct predictions only when the pseudo- 
isotropic assumption is a good approximation, 
that is, when the only shear compliance contribu- 
ting to the twist is the one shown explicitly in the 
St Venant relation. Had we been able to calculate 
S~ and S~4 with the pseudo-isotropic assumption 
(i.e. if we could have had comparable sheets of 
different thickness), the expressions would have 
been 

bc a 

ba a 
M ,  = 7 -  3 ( . ; )  

, b S~6 

, b $44 

and the correct results would have been obtained 
for 

b b 
- >> 1 - >> 1 .  ( 3 )  
s a 

Under these conditions it is clear that errors in 
$5.5 do not affect the results. 

Because of the experimental impossibility of 
complying with the above conditions for the 
aspect ratios, we calculated $66 and S~4 with the 
"exact" method and extrapolated the results to: 

C a 
--* 0 and ~ --+ 0 (4) 

which, of course, is mathematically equivalent to 
Relation 3. The "exact" method with Condition 
4 will therefore give reasonable values of $66 and 
$4~, whatever the value assumed for $5~. These 
conclusions are supported by the experimental 

results shown in Fig. 8a and b where it is seen 

that the curves for $55', Sa5 ~ and S~ 5 all converge 
for aspect ratios toward zero, in spite of the fact 
that at other aspect ratios, the relative differences 
between them can be as large as two orders of 
magnitude. Further support for the suitability of 
the method used here for determining $6~ and 
$44 will be given in a future paper. 

5.3. Further comments on the application of 
the St Venant theory in these experiments 

It is interesting to note that in Fig. 8a and b, both 
$66 and $4~ first increase and then decrease with 
increasing aspect ratio. Table I shows that this 
decrease is always associated with an increase of 
the calculated 3(u) above certain values which 

are, in the calculations of S~: 0.20 for $55z, 0.24 
for $55 and 0.29 for Ss5 ~. In the calculations of 
$4~ the critical values of 3(u) are: 0.20 for $55" 
and 0.25 for $55. These critical values not only 
apply to the trend of $66 and S~ versus aspect 
ratio, but also explain the observed scatter of the 
experimental points. 

A similar effect was observed in previous shear 
compliance measurements of highly-drawn low- 
density polyethylene [3], although at that time 
the number of measurements were insumcient to 
attribute this effect to other than statistical 
errors. Fig. 12a shows a plot of these results, and 
Table II shows the calculations for the points 
obtained with the "exact" method (points 
marked with a circle "O"  in Fig. 12a). These 
results are given in a co-ordinate system com- 
patible with the one used in this paper, that is, 
the z-axis in the draw direction, the x-axis 
perpendicular to it and in the plane of the sheet, 
the y-axis perlzendicular to the plane of the sheet. 
In this system the sheet is transversely isotropic 
in the x y  plane, and S~ = $55. 

We can see that the two points with S6G below 
the interpolated curve are the only ones with the 
corresponding/3(u~) larger than 0.23. 

It is also necessary to consider that the stress 
distribution in these specimens may be affected 
by end conditions, and that the discrepancies 
arise from the use of short specimens [10]. Fig. 
12b shows the calculated values of $66 using the 
exact method, as a function of the length/width 
ratio. Comparison of Fig. 12a and b suggests 
that the correlation is with the aspect ratio, 
rather than the length/width ratio. It can certainly 
be concluded that the calculation of the torque 
in these experiments using the St Venant theory 
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TAB LE I1 Calculation of $6, for transversely isotropic low density polyethylene. 

S~5 = $44 Nix cb 3 [~(uz) ux c/b S~6 x 
(cm ~ dyn -~ • 10 n) (dyn. cm 2 • 10 -s) (cm 4 • 105) (cm 2 dyn -1 • 10") 

341 0.4031 0.860 0.1614 1.160 13.912 49260 
490 2.387 5.090 0.2327 2.071 7.589 6631 
490 1.541 3.989 0.1904 1.435 5.828 8117 
513 1.771 3.665 0.2477 2.460 6.044 3094 
490 1.142 2.895 0.1944 1.483 3.873 3357 
490 0.5718 1.307 0.1996 1.540 2.074 893.4 
508 2.923 7.479 0.1989 1.540 0.9574 191.2 
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Figure 12 Uniaxially oriented low density polyethylene. (a) Plot of S6n versus aspect ratio from the exact (�9 and 
semiexact (A) methods [3]. (b) Plot of S.6 versus length/width ratio. 

for small strain elasticity with no elaboration, is 
not correct in the situation where two shear 
moduli contribute to the elastic behaviour, and 
that it is necessary to proceed by the empirical 
extrapolation procedure. 

5.4. Physical interpretation of the results 
The five measured elastic compliances are (all 10 
sec compliances, $33 and S~I at 0.1 ~ strain) 

S3a = 0.58 S n = 4.45 $66 = 27.7 
$44 = 26.2 Ssa = 5.88 

(all results in 10 -11 cm 2 dyn-1). 
Fig. 13 shows, graphically, the relationship 

between the shear compliances, the system of 
cartesian co-ordinates, shear stresses and shear 
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strains. The plane of the sheet is the z x  plane 
and this contains the crystalline (100) planes. 
(These planes have the maximum atomic 
density.) It can be seen that both $66 and $4~ do 
not involve defornlation but displacement of the 
(100) planes, while $55 involves deformation of 
these planes. We see from the compliance results 
that $66 - -  $4r and moreover that S6n -"- 5S55. A 
straightforward explanation of these compliance 
results is that the planar orientation of the 
crystallites has a considerable stiffening effect in 
their (100) planes. A mechanism involving 
displacements and deformation of the whole 
crystals cannot be ruled out but, since small angle 
X-ray diffraction photographs showed no trace 
of lamellar morphology, and little is known about 
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6. Conclusion 
For the first time, the St Venant theory has been 
applied to determine the three shear compliances 
of a sheet with orthorhombic symmetry. In spite 
of the experimental difficulties produced by the 
availability of only one thin sheet, and the fact 
that the relationship between the shear compli- 
ances placed us in the worst situation for the 
application of the theory, the results obtained 
appear reliable and capable of physical interpret- 
ation. 

Although only 35 % of the material is crystal- 
line, it has been suggested that the planar 
orientation of the (1 00) planes is a fundamental 
factor in determining the mechanical behaviour 
of the sheet. 

$66 

Z r  

Figure 13 The relationships between the system of 
Cartesian co-ordinates, shear stresses and shear strains 
for the different shear compliances. (The plane of the 
sheet is the zx  plane.) 

the samples as a crystalline-amorphous composite 
no definitive conclusions can be reached about 
this possibility. 

Both Saa and Sn also deform the (100) planes 
but they differ in that, while S1, can also separate 
the molecules in the (100) planes, Saa must 
stretch them in their orientation direction. Thus 
it is not surprising that 811 >~ $33. 

When making a quantitative comparison 
between extensional and shear compliances, we 
must use the matrix and not the tensor compon- 
ents (see Appendix). From the values quoted 
above their relationships are 

866 ~ 344 >~ 855 > $11 >~ Saa 

consistent with the plausible physical interpreta- 
tion that the easiest deformation mechanism is 
the displacement of the (100) planes containing 
the benzene rings, followed by shear deformation 
of the (100) planes. Next in increasing difficulty 
is the lateral separation of the molecules in the 
(100) planes and finally a deformation of these 
planes, together with extension of the molecules 
in their orientation direction. 

Appendix 
When studying the mechanisms contributing to 
extension and shear, it is often useful to have a 
quantitative comparison between extensional 
and shear compliances. In this case, it is neces- 
sary to decide whether the comparison should be 
made between the matrix components of the 
compliances (engineering compliances) or be- 
tween their tensor components. The relationships 
are 

where $22 and Ss~ are matrix components and 
$2~2~ and Saa,a are tensor components. We take 
them to illustrate the general procedure. 

Hooke's law can be written in two different 
ways. 
1. The engineering (or matrix) form 

% =  S=,0-1 + S ~ % +  S2~%+ S24% 
+ $25 % + $26 0-0 

es = Ss, 0-1 + Ss2 % + &a aa + $54 0-~ 
+ $55 0-5 + $56 0-6. 

2. The tensorial form 

E22 -~ $2211 0"11 -{- $2222 0"22 .-]- $2233 0"33 
+ 82223 0"23 + $2232 0-32 -[- $2212 ~ 
"q- S2221 ~ -}- 82213 0-13 -~ $2231 ~ 

qa = Sxan 0-1t + $1s22 %2 + Slaaa 0-aa 
4- Sla~a 0-~a "Jr- Sxaa2 0-a2 4- $1a12 ~ 
4- $1a2, 0-gl "4- Slala 0-1a 4- Slaal 0-a,- 

All the engineering (or matrix) stresses are 
equivalent to the tensor stresses 

0-2 ~ 0"22 0"5 ~ 0-13 ~ 0"31" 
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The engineering tensile s trains are equivalent  
to the tensor  tensile s trains 

E 2 ~ E22 

but  the engineering shear  strains are no t  equiv- 
alent  to the tensor  shear strains 

% ---- 2 E l a  ---- 2 % 1 .  

e22 is the d isp lacement  in the y direct ion o f  a 
po in t  s i tuated at  a uni t  d is tance f rom the origin. 
qa  is ha l f  the relat ive d isp lacement  in the 
di rect ion o f  two planes  perpendicu la r  to z and  
separa ted  by  the unit  dis tance (Fig. 14). 

Therefore ,  f rom a physical  s tandpoin t ,  com-  
par i sons  must  be made  between matr ix ,  and  no t  
tensor  componen t s  of  strains,  and  s imilar ly  for  
the compliances .  

Z Z 

. - - - - -7 ,7  l 

b ' j /  // 

E13 

Fig. 14 
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